Generic Detector R&D for an Electron Ion Collider Committee Meeting 30–31 January 2020

EIC BACKGROUND STUDIES AND THE IMPACT ON THE IR AND DETECTOR

LATIFA ELOUADRHIRI

CHARLES HYDE

eRD21 UPDATE:

PERSONNEL

- Funded
 - Vitaly Baturin, PostDoc ODU 50% FTE
 - Andrey Kim, PostDoc UConn 50% FTE
 - Christine Ploen GRA ODU 33% FTE
- Other Personnel
 - Latifa Elouadrhiri: JLab physics, co-P.I.
 - Charles Hyde: ODU physics , co-P.I.
 - Pavel Degtiarenko: JLab RadCon
 - Marcy Stutzman: JLab accelerator
 - Mike Sullivan: SLAC physics

- Mark Wiseman: JLab engineering
- Alexander Kiselev, BNL Physics
- Vasiliy Morozov: JLab accelerator
- Youri Sharabian: JLab physics
- Nick Markov: JLab physics
- Kyungseon Joo: UConn physics
- Yulia Furletova: JLab physics
- Frank Marhauser: JLab RF

SYNCHROTRON PHOTON GENERATION

- Semi-analytic code ported from SLAC
- Power Distribution as a function of critical energy turned into ensemble of photons for further propagation by GEANT4.G

SYNCHROTRON PHOTONS PROPAGATED THROUGH IR

- Central Be Chamber
- 5 layers of Si Vertex Tracker

HITS (left) AND ENERGY DEPOSITION (right) Be beampipe and 5 Si Layers

- $10^{11} e^{-}$ at 10 GeV
- $2.4 \cdot 10^9 \gamma$ through 2стФ collimator at z=1m

ENERGY
DEPOSITION (left)
and DOSE (right)
Be (layer 0) and 5 Si
Layers.

- Beam Current 0.8 A
- Total power to 0° = 400 W

6

SVT Layer	1	2	3	4	5
Energy Deposition (GeV)	9.3•10 ⁻⁴	$7.1 \cdot 10^{-3}$	$2.3 \cdot 10^{-2}$	$7.6 \cdot 10^{-2}$	1.6•10 ⁻¹
Mass (g)	4.1	30.2	60.4	115.9	174.5
Dose rate (GeV/g/sec)	1.1•10 ⁴	1.2•10 ⁴	1.9•10 ³	3.2•10 ⁴	4.5•10 ⁴
Dose rate (KGray/year)	17.7	18.4	29.8	51.3	71.7

C.Hyde eRD21 31 Jan 2020

BEAM-GAS SIMULATIONS WITH FLUKA

- Full inclusion of 70 m upstream beamline
- Magnets
- Tunnel walls, ceiling, floor

DETECTOR WITH 6 LAYERS OF SI VERTEX TRACKER

BEAM-GAS

- Raw Image:
 - Yields per incident proton on 100 mBar gas
 - Multiply by 4.7•10⁷/s to obtain rates per sec for 0.75A protons incident on 10⁻⁹ mBar residual gas

Energy Deposition (GeV/cm³)

Dose (GeV/g)

Fluence (Particles/ cm²/sr)

9

NEUTRON FLUENCE AT THREE LOCATIONS

- "Si Barrel" = SVT
- Si Forward = photo-sensors at z = 2.4m, r = 1m
- Si Backward = photo-sensors at z=-1.6m, r=1m

THE DETECTOR IS BOTH AN ABSORBER AND A GENERATOR OF BACKGROUND

• The electron side calorimeter increases the upstream flux and decreases the downstream flux

C.Hyde eRD21

31 Jan 2020

ADDITIONAL PROGRESS SINCE 01-JAN-2020

MARS

- MARS installed on JLab cluster
- Vitaly Baturin subscribed as MARS user
- N. Mokhov (FNAL), P.Degtiarenko (JLab) will install advanced MARS version with graphical interface in February

FLUKA

- New FLUKA version (including ep collisions) installed, simulations started
- Initial studies done with detector solenoid field: no effect on backgrounds
 - Calculated backgrounds dominated by neutrons.

OUTLOOK

- Migrate simulation models to eRHIC beamlines & detectors
 - Will need full physical data on locations, strengths of magnets in full Interaction Region
 - Approximate iron content of magnet yokes
 - Vitaly Baturin will come to BNL later in Spring

TIME/RESOURCES TO COMPLETION

- Path to TDR 2023
- BNL Interaction Region: Synchrotron, Beam-Gas, Beam-Beam
 - FY 2020 + FY 2021
- Funding FY 2020

50% postdoc ODU

50% postdoc Uconn

25% Grad

- Expected Funding Request FY 2021 to complete project
 - 1.5 FTE Postdoc
 - 1 FTE Grad Student
 - Consultant funding (Mike Sullivan)
 - Engagement with BNL & JLab Engineering, (Mechanical & Vacuum), Collider Accelerator Division

C.Hyde

BACKUP eRD21 31 Jan 2020 C.Hyde

CALIBRATING BEAM-GAS INTERACTION BACKGROUNDS TO HERA DATA

GEANT4
 simulations (red
 diamond) agree
 well with HERA
 measurements

SYCHROTRON HITS IN SVT WITH UPSTREAM AL BEAMPIPE REPLACED WITH STAINLESS STEEL

Only ~10%
 decrease in hits
 to SVT
 compared with
 slide 6

edep in SVT layers

SYNCHROTRON HITS IN SVT AND ENTIRE BEAMPIPE (FLANGE-TO-FLANGE)

